Effects of temperature on the dynamics of the LacI-TetR-CI repressilator.

نویسندگان

  • Jerome G Chandraseelan
  • Samuel M D Oliveira
  • Antti Häkkinen
  • Huy Tran
  • Ilya Potapov
  • Adrien Sala
  • Meenakshisundaram Kandhavelu
  • Andre S Ribeiro
چکیده

We studied the behaviour of the repressilator at 28 °C, 30 °C, 33 °C, and 37 °C. From the fluorescence in each cell over time, we determined the period of oscillations, the functionality (fraction of cells exhibiting oscillations) and the robustness (fraction of expected oscillations that occur) of this circuit. We show that the oscillatory dynamics differs with temperature. Functionality is maximized at 30 °C. Robustness decreases beyond 30 °C, as most cells exhibit 'failed' oscillations. These failures cause the distribution of periods to become bimodal, with an 'apparent period' that is minimal at 30 °C, while the true period decreases with increasing temperature. Based on previous studies, we hypothesized that the failures are due to a loss of functionality of one protein of the repressilator, CI. To test this, we studied the kinetics of a genetic switch, formed by the proteins CI and Cro, whose expression is controlled by PRM and PR, respectively. By probing the activity of PRM by in vivo detection of MS2-GFP tagged RNA, we find that, beyond 30 °C, the production of the CI-coding RNA changes from sub-Poissonian to super-Poissonian. Given this, we suggest that the decrease in efficiency of CI as a repressor with temperature hinders the robustness of the repressilator beyond 30 °C. We conclude that the repressilator is sensitive but not robust to temperature. Replacing CI for a less temperature-dependent protein should enhance robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

Influences of Brassinosteroide and Hot Water on Postharvest Enzyme Activity and Lipid Peroxidaion of Lime (Citrus aurantifolia L.) Fruit During Storage at Cold Temperature

Storage of Lime (Citrus aurantifolia L.) fruits, originally a tropical fruits, in low temperature confronts with several difficulties  due to the risk of chilling injury (CI). To develop an effective method aiming to  reduce CI, the effects of treatments containing 0, 0.5 and 1 Mg/lit brassinosteroids (BRs) and hot water (HW) including 20°C as control, 45 and 55°C for 30 minute on CI was studie...

متن کامل

Thermal conductivity calculation of magnetite using molecular dynamics simulation

In the current research, thermal conductivity of magnetite (Fe3O4) has been calculated using molecular dynamic simulation. The rNEMD Molecular Dynamics Method provided in the LMMPS package is used for the simulation of the thermal conductivity. The effects of magnetite layer size and temperature on the thermal conductivity have been investigated. The numerical results have...

متن کامل

Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation

In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...

متن کامل

Calculation of the Mechanical Properties ofCu-Ni Nanocluster

The aim of this research is to calculate the elastic constants and Bulk modulus of Cu-20 wt% Ni random Nanoalloy. The molecular dynamics simulation technique was used to calculate the mechanical properties in NPT ensemble. The interaction between atoms as well as cohesive energy in the Nanoalloy modeled systems was calculated by Morse et al. two body potential. Also the temperature of the syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2013